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Interest in the study of concentrated columnar vortices has been largely motivated by 
efforts to determine the structure, mechanism of formation, and energy source of such natural 
phenomena as tornadoes [1, 2] and "dust devils" [i, 3-5]. tornado-like vortices are produced 
experimentally by various techniques (e.g., with the presence of a sink in a rotating fluid 
[6-10]). In this setting, the problem of the energy sources of real vortices is sidestepped, 
and only the flow structure is investigated. Vortices have been generated [11-13] by a 
mechanism that is possibly closer to reality. The source of vorticity concentration in 
this case is an unstable stratification of a water-air mixture [ii] or air heated from below 
[12, 13]. Theoretical models based on unstablestratification have been devised [12, 14], 
in one case with the assumption that only a thin layer near the bottom surface [12] and, in 
the other, that the entire atmosphere [14] is unstable. Qualitatively different results are 
obtained in either case. For example, if the vortex radius is taken to be the distance at 
which the rotational velocity attains a maximum, then it is inferred from [12] that its 
value increases with height z along the vortex,whereas [14] implies that it does not depend 
on z. 

I. The apparatusused togenerate andinvestigate tornado-like vorticescomprises a cyl~- 
drical vessel of heat-resistant glass. The cylinder has a height of 130 mmand a diamete 
of I00 mm. It is mounted vertically, filled with water, and heated from below. The liquid 
is set in motion by a rotating transparent disk mounted near the top of the open part of the 
cylinder. The disk has a diameter of 90 mm. The experimentally generated flow has axial 
symmetry. We introduce a coordinate system (r, ~, z), where r is the radius and ~ is the 
azimuth angle. The z axis coincides with the flow symmetry axis. We denote by u, v, w the 
velocity components corresponding to the coordinates r, ~, z. The flow velocities are mea- 
sured by the hydrogen-bubble method [15]. Copper wires with a diameter of 50 ~m are used 
for this purpose. The following functions are determined: v(r) and w(r) for fixed values 
of z; v(z) for fixed values of r. The functions v(r) andw(r) are determined from photo- 
graphs of the line of bubbles generated by a horizontal wire. The wire is stretched across 
the diameter of the cylinder at heights of 1 and 3 cm above the bottom. In the first case 
the bubbles are photographed from topside at an angle of i0 ~ relative to the z axis, and in 
the second case from the side along the normal to the wire. The function v(z) is determined 
by photographing the bubbles from a vertical wire. The latter is set at a distance of 20 
and 30 mm from the center of the cylinder. The bubbles are photographed from the side along 
the radius through the wire. In every case the bubble line is photographed on film with a 
certain delay time T after bubble formation. The photographs are taken for different values 
of the disk rotation frequency f and the water depth Z in the cylinder. 

In the absence of heating, the liquid outside thin boundary layers at the solid sur- 
faces rotates almost as a rigid body. The frequency of rotation is roughly equal to 0.2f. 
Maxworthy [9] has obtained a similar result. With heating at the center of the cylinder, a 
vertical vortex is formed. Figure i gives a photograph of this vortex, which is visualized 
by the addition of dye in the lower boundary layer (f = 0.9 rps), Fig. 2 represents a typical 
photograph of the bubbles from a vertical wire (T = 0.53 sec, f = 0.9 rps), and Fig. 3 repre- 
sents topside photographs of the bubble line from a horizontal wire. The upper frame corre- 
sponds to f = 0.9 rps, and the lower frame to f = 1.54 rps. In both cases I = 12 cm and 
r = 0.Ii sec. Figure 4 represents photographs of a bubble line, illustrating the function 
w(r) at a height of 1 cm (T = 0.53 sec, f = 0.9 rps). 

Making use of the experimental data, we note some important qualitative features of the 
flow. Immediately after exit from the boundary layer, a vortex explosion takes place [9] 
(Fig. i). We infer from the data of Fig. 2 that in the first approximation v does not de- 
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pend on the height z. According To Fig. 3, it is possible within the vortex to discern a 
core, in which the rotation is close to that of a rigid body, while outside the core it is 
nearly potential. Figure 3 and Table i illustrate the effect observed in the experiment. 
With an increase in f(f~0.9 rps, Z = 12 cm) or with a decrease in l(f = 0.9 rps, Z~I2 
cm) the radius of the core increases sharply, but with an increase in f(f~0.9 rps, I = 12 
cm), it remains practically unchanged. In Table i, ro is the radius of the core, and A~ is 
the value of vr at r = ro. According to Fig. 4, the vertical-velocity profile is close to 
a step function. The radius r, of the updraft zone is approximately equal to the radius of 
the core. The flow inside the core is directed upward. 

Along with the determination of the velocity field, we have measured the temperature 
as well. A mercury thermometer is used for this purpose. The measurements indicate that 
the temperature in the core is I-3~ higher than outside the core. In the region exterior 
to the core we observe roughly a Ioc increase in the temperature as the thermometer is 
lowered from a height of i0 cm to 1 cm. Also, the temperature of the water in the cylinder 
increases approximately at the rate of I~ every 30 sec. Measurements in the core and at 
various heights show that the characteristic temperature is Ioc. The characteristic time 
of the process, in turn, reckoned according to the frequency of rotation of the core or the 
ascension time of the liquid in the core, amounts to a few seconds. Thus, the variation of 
the water temperature during the characteristic time of the process is small in comparison 
with the characteristic temperature. We note that in all the experiments the flow was 
laminar and the heating conditions were constant. 

2. On the basis of the experimental data we construct a theoretical model of the 
observed effect. The principal objective here is to obtain expressions for the radius of 
the core and to determine its compaction effect. A schematic diagram of the flow field in 
the cylinder in an axial cross section is given in Fig. 5. Region I is the boundary layer, 
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in region II the flow from the boundary layer emerges upward in the form of a narrow twisted 
stream, vortex explosion takes place in region III, the vortex core is formed in region IV, 
and in region V the flow is close to potential. Let us examine regions IV and V. We place 
the origin at point O. We state the following main assumptions: 

a) The flow is laminar, steady, and cylindrically symmetric. 

b) The Boussinesq approximation holds. 

c) The azimuthal component of the velocity is independent of z in the first approxi- 
mation, so that 

vr = A~)  -~ eAl(r, z), (2.1) 

where e << and A ~ A~. 

d) Since roar,, we assume that ro = r,. 

e) The region V(Fig. 5) extends to infinity in the radial direction. 

f) In each cross section z = const the axial velocity profile w(r) and the quantity 
0(r) = T -- T,. where T is the temperature and T, is the temperature at an infinite distance 

from the vortex axis, can be approximated by step functions in r: 

{ W(z), {O(oZ), O ' ~ r < r o ,  
w(r) = O, O(r) = , r>ro  (2.2) 

(we note that if in the approximation of e we replace ro by rz # ro, the qualitative results 
remain unchanged, except that certain coefficients in the equations acquire factors of the 

2 2 type r,/ro of order unity). 

g) Inasmuch as ro<<~ and the variations of the velocity with height and along the 
radius of the core are of the same order, we invoke the approximation of an axial boundary 
layer. 
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We now derive the system of equations. We use assumptions a), b), e), g), an equation 
of state in the form 0 = 0o[i -- a(T-- To)], and the relations T, = T,(z), P, = P,(z). Here 

is the specific coefficient of thermal expansion, P, is the pressure far from the vortex 
axis, and 0o, To are the density and temperature at z = 0, r + ~. As a result, the equa- 
tions of continuity, motion, and energy assume the following form in a cylindrical coordi- 
nate system: 

aQ/ar = a(wr)/az; 
a(vr)  , a(vr)  O [ 4  a(vr)~ w ~ = vr  u'-gT--~ - r  : ~ k T T / '  

au Ou v "2 ap a [ t a (ur)~ 
U = - @ I U  Or Oz r Or :c- V ~r  [ r  - - ~ - - ) '  

O,,t,:@ , a ( ,w  2) rOp ~ c z g r O +  v.$_r[r_dT.), 
dr -I- Oz az ' 

(2.3) 

(2.4) 

8 (0()) a (rwO) _~r~,,  @ ~ (/" ~  
Or. ~ a: , - z ~ 7  \ o, .]" 

where Q = --ur; 9, kinematic viscosity of the liquid; ~, thermal diffusivity; g, acceleration 
of gravity; B: = --~T~/~z;fp = (P -- P~)/po; and P, pressure. From (2.3) and the first expres -r 
sion (2.4) we obtain an expression for the radius of the core. We determine ro from the 
maximum of the azimuthal velocity. Then, on the basis of c), ro is independent of z in the 
first approximation. To do so, we assess the possibility of neglecting the second term on 
its left-hand side. We assume for this assessment that the rotation inside the core is of 
the rigid-body kind. Estimating u from the equation ofcontinuity, we obtain 

u8 (v r ) /ar  ~ AWror2/(r~Z), (2.5) 

,oa ... Waro , 'V  (r O, 

where I'o is the value of (vr) at the boundary of the core and AW, Aro are the variations of 
the quantities over the height I. According to (2.5), it is impossible to neglect the given 
term if AWro >> WAro. The latter statement is true because, according to (2.1), Fo >> AFo and, 
as will be shown presently, AW ~ W. 

We reject the indicated term and make use of assumption e). We obtain the first-ap- 
proximation equation 

o 2 d2A ~_ Q dA _ O, ~] = r ' / ro  
dq ~ 2~1 dB ( 2 . 6 )  

We apply the boundary conditions A(0) = 0, A(~) = A~. We use Eqs. (2.3) and (2.6) to de- 
termine the structure of Q, arriving at an expression for ro. It follows from (2.6) that 
Q = Q(r) in the first approximation. Then, according to (2.3), w is a linear function of z: 

w ~ z.  ( 2 . 7 )  

Solving (2.3) with regard for (2.2) and (2.7), we obtain 

Q = / Qoq, o ~ < r l ~ < l ,  ( 2 . 8 )  
( Qo = r~AW/(21) ,  ~ >~ 1. 

By definition, the azimuthal velocity is a maximum at the point ro, We integrate (2.6) with 
regard for (2.8). We analyze the resulting expression for an extremum of the azimuthal ve- 
locity. We deduce as a result that Qo satisfies the equation exp(QQ/(2~)) --1 = Qo/~. Hence, 
Qo ~ 29. We put Qo = 29 in the first approximation. Then from (2,8) we find the required 
expression for to" 

2 = 4 v l / ( A W ) .  ( 2 . 9 )  T o 
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Consequently, to ascertain the dependence of ro on the parameters of the model we must de- 
termine AW. We find the latter from the equation of motion for the axial component of the 
velocity and the energy equation. We solve them, making use of assumptions d) and f). We 
introduce the dimensionless variables 

Wo = w I V ~ g t ,  O o = Ol~i, ~ = z/L (2.10) 

We integrate the equation for w with respect to r from 0 to ro and with respect to z from 
0 to Z and integrate the energy equation with respect to r from 0 to to. We substitute 
(2.10) into the resulting expressions and interpret 8 as its height-average value. 

We o b t a i n  

1 1 

Wo ~ (1) - -  Wo ~ (0) = - -  Apo + j" Ood~ + 
0 

 (W.Oo) Wo {oo), 
d~ = + ro~ V ~ t \Tr/o" 

r o 
2 " Apo - - - - ~ ,  ! (p (i) --  p (0)) rdr. 

d~, (2.11) 

(2.12) 

The subscript 0 signifies that the derivatives are evaluated at r = ro. We obtain order-of- 
magnitude estimates of the derivatives 

(Ow/Or)o ~ --W/ro,  (O0/Or)o ~ --elr0. (2.13) 

On the basis of (2 .7 )  we seek a solution of (2.11) in the form of linear functions with re- 
spect to ~: 

Wo ---- al~ + be, Oo = a2~ + b2. ( 2 . 1 4 )  

The quantities at, bt, a2, ba do not depend on ~. Their physical significance follows di- 
rectly from (2.10) and (2.14). We substitute (2.10) and (2.14) into (2.9). We obtain 

r~ = 4vlaiy=~g. (2.15) 

Substituting (2.13) and (2.14) into (2.11) and replacing r~ by its value (2.15), we have 

5a~/4 + 5albl/2 = - -  Apo -t- a~/2 + b2, 

i - 1  

where Pr = 9/• Since 4Pr >>i, we obtain in the first approximation 

- ~ / 1 / t  4APo ~ (2.16) 
al 

Thus, for solutions of the form (2.14) only one out of the four variables a,, bt, a2, b2 ~s 
specified independently, while the others are determined by solving the system (2.11). It 
is physically clear that b, or be, i.e., the value of the velocity or temperature at the 
lower boundary (for ~ = 0) can be specified. However, it is difficult to assign b~, because 
in the vortex explosion process there can occur an unmonitorable entrainment of liquid from 
the exterior region into the core or, conversely, expulsion from the core [9]. We therefore 
adopt h~ as the free parameter. We infer from (2.16) and (2.15) that to find the value of 
ro it is necessary to specify b2 and 8 and to determine Ap0. The heating conditions were 
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constant (a dn fixed) in the present experiment, and so it may be assumed that b2 and 8 are 
approximately constant. Then the variations of ro are completely determined by the varia- 
tions of Apo. 

We determine Apo and, in order to explain the core compaction effect, analyze the de- 
pendence of Apo on A~ and Z. The equation of motion for the radial component of the veloc- 
ity in the first approximation has the form 

Op/&" = A 2/r3. (2 .17  ) 

Assuming that the rotation is of the rigid-body type inside the core and is potential out- 
side it, by means of (2.17) we obtain 

r 0 

S P (1) rdr = --  3A~/8.  ( 2 . 18 )  
o 

For  t h e  d e t e r m i n a t i o n  o f  Apo i t  i s  r e q u i r e d  to  f i n d  t h e  d i f f e r e n c e  be tween  (2 .18)  and the  
i n t e g r a l  

r 0 

.! p(O) rdr. 
o 

We determine the latter, taking into account the conditions at the lower boundary, namely 
the vortex explosion effect. We consider the region AA'B'B (Fig. 5). We denote by rl the 
radius of the vortex before explosion, and by u~ the average velocity in the cross section 
CC'. We write the integral law of conservation of the axial component of the momentum for 
AA'B'B: 

r o 

p (0) rdr - -  

o 

2 2 
3 A,~ Ai In r~ 4 ulr~ 
8 ~ --  ~ q 2 

(2.19) 

The following assumptions are basic to the derivation of (2.19). Outside the region CDEAA' 
E'D'C' the liquid has a negligibly small vertical velocity. The segment CD is sufficiently 
short to permit neglect of friction and the buoyant force acting on the segment. Inside 
CC' the rotation is of the rigid-body type, and outside the segment it is potential. Equa- 
tion (2.17) is valid in the region BEE'B' as well. In addition , on the basis of the experi- 
mental data, in (2.19) we reject terms corresponding to the momentum flux in the cross sec- 
tion AA' as well as the buoyant force and the friction force acting on AA'E'E. To estimate 
them we use tabulated data, along with the quantities W(0) = 1.6 cm/sec and AE = I cm. We 
obtain an expression for 2 u,r:. The quantity u,r~ is equsl to the mass flux in the boundary 
layer, divided by ~. For laminar flow Rott and Lewellen [16]give the estimate u,r~ ~(gA~)=/2. 
R, where R is the order of the radius of the cylinder. It has been shown [17] that the diam- 
eter of the vortex before explosion is equal in order of magnitude to the boundary-$ayer 
thickness 6. This fact has also been noted in [9]. According to [16], ~ ~ (~/A~) z/2 R. 

22 Then, u,r, = kay, where k is a certain constant coefficient. Using the latter expression, 
we substitute (2.18) and (2.19) into (2.12). We obtain 

A p o  = I n  - k . (2.20) 

We show that if the expression in the parentheses is positive, then ro will be an increasing 
function of A~and a decreasing function of Z. We assume the opposite. Then Apo increases 
with increasing A=o or decreasing I. The latter is true, since according to experiment, 
ro/r~ ~ i0, and, according to [16], r~ is a decreasing function of A . The growth of Apo 
causes ro to increase, contradicting the original assumption. 

We substitute (2,20) and (2.16) into (2.15). We solve the resulting expression for 
r~. We find 

2 4]/5~ O/cZ -c 1 q-c) ,  ( 2 .21 )  ro 
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where 

C -- 

(I. (~o/~,) - k) A% 

Substituting (2.21) for (2.15), we get 

~ = u b'  ~,~- ~ + c)" (2,22) 

We can use (2.10), (2.14), and (2,22) to determine W(O) and AW. 

We have thus derived expressions for estimates of the vortex parameters. It follows 
from their derivation that, according to the model, the boundary layer at the bottom surface 
exerts an appreciable influence on the external flow, Vortex explosion is the principal 
factor in this influence. 

We note a departure of the models in [12, 14] from the one discussed here. In [12] 
the flow is assumed to be turbulent, and the liquid inside the core is entrained due to 
turbulent mixing processes at its boundary. The continuity equation obtained in this case 
doesnot have solutions in which W ~ z and ro is independent of z, Conversely, according 
to [12], ro increases with the height z, The model proposed in [14] is closer to the present 
one. It is deduced in [14] that ro does not depend on z, For the given stratification of 
the medium ro depends only on the viscosity, ro % ~=/=. The existence of the boundary layer 
at the bottom surface is practically ignored in [14]. We note that expression (2.21) for 
c § 0 coincides with the expression for r~ in [14], correct to within a coefficient of order 
unity. In both [12] and [14] the height of the vortex does not enter into the parameters 
of the problem. 

3. We now compare the given model with the experimental. 

I. The core compaction effect withincreasingAoo ordecreasing ~ is explained within the 
context of the model if the heating conditions are fixed. Since ro increases with increasing 
Ar or with decreasing l, the quantity Aoo/(ro l) must vary less appreciably than each of the 
quantities A~, ro, I taken separately. This result is consistent with experiment (see 
Table i). 

We investigate the possibility of using expressions (2.21) and (2.22) to calculate 
the parameters of vortices. According to (2.21) and (2.22), the only unknown is in(ro/r,) - 
k. Inasmuch as ro/r, did not vary more than an order of magnitude in the experiment and the 
minimum value of ro/r, is of the order of i0, we can regard the quantity in(ro/rl) -- k as 
constant in the first approximation. To evaluate it we make use of the fact that ro is prac-- 
tically invariant for f ~0.9 rps and L = 12 cm. The latter result implies that the data of 
the first column in Tabl~ 1 corresponds to small c. For better correspondence with the ex- 
periment we assume for the first column that c = 0.2. 

2. We determine the theoretical values of W(0), AW, and ro for c = 0.2. We set Po = 
1 g/cm a, ~ = 2"10 -~ (~ ~ = 0.7.10 -2 cm2/sec, 8 = 0.i ~ and bu = i. Then from 
(2.10), (2.14), (2.21), and (2.22) we obtain W(0)~ 1.4 cm/sec, AW~0.7 cm/sec, and ro 
0.7 cm. 

The corresponding experimental values are W(0)~ 1.6 cm/sec, AW~0.6 cm/sec, and 
ro~0.3 cm (here W(0) is the maximum value of w at a height of I cm, AW is calculated from 
the difference between the w maxima at heights of i and 3 cm, and ro is taken from the first 
column of the table). 

3. Using expression (2.22), we calculate the ratios of the core radii corresponding 
to the values of A~ and I from columns 2-4 of the table to the value of ro corresponding 
to A~ and I in column i, and of the radius ro corresponding to A~and Z from column 3 to ro 
from columns 2 and 4. We obtain 1.3, 2.4, 1.3, 1.8, and 1.8. 

The analogous ratios for the radii ro taken from the table are equal to 1.8, 3.7, 1.8, 
2, and 2. 

Thus, the theoretical results arequalitatively consistent with the experimental, and 
the calculated values of the vortex parameters according to the model equations agree in 
order of magnitude with their experimental values. 
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The author is indebted to B. A. Lugovtsov for a discussion of the results and a number 
of valuable comments relevant to the theoretical part, as well as to V. F. Tarasov, S. P. 
Khachaturyan, and V. I. Yakushev for assistance in the construction of the experimental 
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